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ABSTRACT:

A method of formulating the dynamical equations of a flexible, serial manipulator

is presented, using the Method of Kinematic Influence. The resulting equations account for

rigid body motion, structural motion due to link and joint flexibilities, and the coupling
between these two motions. Nonlinear inertial loads are included in the equations. A
finite order mode summation method is used to model flexibilities. The structural data

may be obtained from experimental, finite element, or analytical methods. Nonlinear

flexibilities may be included in the model.

INTRODUCTION:

Link and joint flexibility often have significant effects on the performance of

robotic manipulators. Simulations which include the dynamical effects of flexibility
should include the structural dynamics coupled with the dynamics due to the gross motion

of the links. A method of formulating such a dynamical model is presented. It extends the
Method of Kinematic Influence to include a finite order mode summation model of

structural dynamics.
The Method of Kinematic Influence is used to obtain a geometric and kinematic

description of the robotic device, which includes the effects of flexibility. The kinematic

description is then used to obtain a dynamical model which includes structural motions,

gross motion of the links and base, and the coupling terms between the structural and

gross motions. Nonlinear inertial forces are included. The operations used in obtaining

this model are simple transformations of the inertias of each link, and first order

transformations of forces and torques. A computer program, called V-Sire, has been
written which uses this method to automatically generate the dynamical model for

simulations.

REVIEW OF PREVIOUS WORK:

Various models of structural dynamics in robots have been presented in the

literature. Many of these models use a finite order modal representation of the distributed
mass and stiffness of each link. [6-8,11,14-19,21,23-25] Some lumped parameter models,

[1,5,13,20,22] and some finite element models [2,9,17] have been presented. Linearized

and quasi-static models have also been analyzed to determine how they differ from the

full non-linear dynamical model. [16,17,20]

The method used to derive the dynamical equations should be chosen because it is

easy to understand, or because it meets some other desirable criteria. Lagrangian

derivations are common in flexible body dynamical modeling because they use the kinetic

and potential energies, which may be easily obtained for a system of flexible bodies.

[6,13,23-25] Hamilton's Principle has also been used because it provides similar

advantages. [17] Other derivations have used Newton's La_s. [7,20]

Many computational algorithms have been presented. Great variations exist in the

order of the calculations, and in how the algorithms collect common operations and

common terms. Recursive methods of computation have been popular because of their

tractability and efficiency. [11] Other more general methods which do not depend upon a
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specific recursive algorithm, have been presented. [3,4,10,12,19,23] Most methods may

also be used to obtain the system inertia matrix and the non-linear torques which are
necessary in control algorithms involving dynamical compensation.

The assumptions of the structural model have great effects on the validity of the
resulting dynamical model. For example, mode summation models often assume modes to

be geometrically decoupled at the local link level, and may ignore certain dynamical
stiffening effects which may occur. [15,19] If inertial variations due to flexibility are

included, these models will predict extremely large deflections and become unstable at

high rotation rates. When such a model is used, the assumptions which restrict its

application should be examined. In general, these models are valid only for small link
deflections.

The Method of Kinematic Influence was developed first for rigid body, open loop

(serial) mechanisms. [3,4,10] The method was extended to closed loop (parallel)

mechanisms [12], and then to mechanisms with flexible joints [13,22], and flexible links

[23]. This method is an extremely powerful and simple way of obtaining the dynamical

model of a complex mechanism. Its organized structure yields information which is useful
in mechanical design and analysis. It may also be used to calculate information about the

system inertia matrix and non-linear forces and torques which are required in many
advanced control algorithms.

THE GEOMETRY OF A FLEXIBLE SERIAL MECHANISM:

The geometry of a serial mechanism can be represented by a series of links
connected by translational or rotational joints. A local coordinate frame is attached at the

proximal end of each link. The z-axis coincides with the proximal joint axis. The x-axis is

perpendicular to both the proximal joint and distal joint of the undeflected link. The

undeflected link is represented by the vectors a i and si+l. The joint angle is denoted by

¢_i, and the link angle by ct i, as show in figure 1. If the proximal joint is rotational, _i will

be a variable, but if it is translational, si will be a variable. Link deflections are

represented by a displacement vector, d, and a small rotation vector, 0.
nm
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Figure 1, Geemetric Parameters
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A finite order modal representation is used to describe the structural deflections

of each link. The deflection of a point on the link is a function of the magnitude of the

modes of the mechanism, q.

(i)
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Often, the modes are assumed to be geometrically decoupled at the local link level, and the
deflections can be written in modal matrix form.

(o (2)

The rotational coordinate transformation between sequential local coordinate

frames can be represented in a 3x3 matrix form, [iTi+l]. The rotational deflection is

represented by the skew-symmetric form of the small rotation vector, O i, added to the

identity matrix. This matrix is post-multipliod by a matrix representing the angle e i

about the x-axis, and then by a matrix representing the angle 0i about the distal joint (z-

axis).

-o,o, r i o 0 l ¢oso -sine 0

[_Ti+,]"o. i -o, [ o _o,e-si._[si.__os,o (3)
0 sine cosa a

-0y 01 1 0 0 i

Notice that the rotational transformation matrices between other frames may be found by

concatenating these matrices, and that the inverse of a rotational transformation matrix

may be approximated as the transpose, since the determinant is very close to one.

i-I

[hr.,]-I-IE%d-E_T_d[_*T_z]-..E)-'T.,] (4)

ChT_"'= [nTi]T= ['Th] (5)

The position vector of a point on link P is:

p-I

j-h

(6)

where Xp is the undeflected position of the point. All vectors are referenced to a common
coordinate frame.

THE METHOD OF KINEMATIC INFLUENCE:

The Method of Kinematic Influence allows the cartesian velocities of any point on

the mechanism to be expressed in terms of the positions and speeds of the joints, modes,

and the base. This expression may be organized in the form of a Jacobian matrix, [.I]. The

translational and rotational cartesian velocities of the point, P, are described by a 6xl
vector, such that:

It is convenient to combine the joint variables with the modal variables in one vector. This

hybrid combination of joint space and modal space will be called j-re space. Base motion is
modeled as three rotational and three translational joints at the origin of the base link.

The columns of the Jacobian matrix are called the Kinematic Influence

Coefficients, g, and are functions of the mechanism geometry, the joint positions, and the
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deflections. For a rotational joint or base motion which contributes to the motion of point,
P , the Kinematic Influence Coefficient is defined as:

(8)

For a translational joint or base motion which contributes to the motion of point, P , the
coefficient is defined as:

gi = (9)

For a mode qi which contributes to the motion of point P , the coefficient is defined as:

aqil I °3qil

clqil

(10)

But, if the modes are geometrically decoupled, the column of the modal matrix which is

associated with this mode may be substituted for the partial derivatives.

(11)

For a joint or mode which does not contribute to the motion of point, P , the coefficient is
defined as:

///'_,2_-". /

Fisure 2,The Geometric InfluenceCoefficientforJointi

(12)

i

The S and R vectors can be found from our knowledge of the geometry of the mechanism. R
is the vector position from the joint or deflection to the point, P, and S is the vector of

direction cosines which describe the line-of-action of the joint or deflection, as shown in

Figure 2. All of the vectors which are used in these formulas must be expressed in a
common frame of reference.
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KINEMATIC INFLUENCE AND EQUIVALENT FORCES:

The Jacobian matrix also serves as a relationship between cartesian force/torques

and the equivalent j-m loads:

where {x Q } is the vector of equivalent loads in j-m space, {F M} is the 6xl vector of

cartesian forces and torques, and [Jp]T is the transpose of the Jacobian Matrix for the
point where {F M} is applied. This relationship is a result of the duality of forces and

velocities, and may be proven by showing that the virtual work performed by the cartesian

force/torque is equal to the virtual work done by the equivalent j-m loads.

(14)

THE DYNAMICAL EQUATIONS:

Consider a differential element of mass in one of the links. The kinetic energy of
this mass element is:

KEp_I I_rC 8m_I] [0] ]
(15)

The velocities are referenced to a local coordinate frame fixed in the element. Potential

Energy is defined as the integral of an elastic force and moment, from a reference position

where there is no Potential Energy, to the current position, allowing for nonlinear

stiffnesses in the system.

Lagrange's Equation provides a convenient starting point for deriving the final

form of the dynamical equations of the mass element.

xJ =d (¢3-_-x_j)'aKE +c3P--_Edt 0xj c3xj (17)

By chosing x to be the cartesian coordinates fixed in the mass element, the resulting

equation is a familiar form.

[ 8m_I]
=,

L [0] ,0,]l:l./ }.l l ,,,,
But this form of equation is not suitable for simulation. The equations must be converted
to j-m space, and all of the other mass elements in the mechanism must be considered.
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To expressthese dynamicalequationsin terms of j-m space, the Jacobian

transpose relationship is used, where [Jp] is the Jacobian for the mass element.

.Tin ,Sm_I] [o]
(19)

Next, the dynamical equations for each mass element in the mechanism must be

combined to form the dynamical equations for the system. This can be accomplished by

adding all of the equations together, and can be written as a volumetric integral
throughout the mechanism, assuming the mass elements are very small. Notice that the

forces between the particles cancel because they are equal and opposite, _ at the
joints, and "at" the modes.

(20)

where p is the mass density and II/V is the inertia "density". For practical purposes, the

integral term must be simplified. Let the acceleration of the particle can be expressed as

the sum of a linear function of the j-m accelerations, and a nonlinear function of the j-m
velocities.

(21)

Substituting this formula into the integral,

Ejp]T

p.[I] [0]

IV( [ p_[I] [0]

[Jp]_ (22)
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The nonlinear inertial forces are lumped in one term for notational brevity. Notice that

the linear inertial integral involves a similarity transformation. This will yield the

system inertia matrix. It is most convenient to perform the integration over each link, and

then sum the results. To do this, it is necessary to express [Jp] in terms of the Jacobian of

the link coordinate frame, and a Jacobian expressing the motion of the mass element with

respect to the link coordinate frame.

:,1{J']-- [o] D] {'_]
(23)

The nxn zero matrix and mxm identity matrix in this formula are used to make the matrix

multiplication conformable ( n equals the number of joints, and m equals the number of

modes of the mechanism). The matrix [¥p/i] is equivalent to [Up] - [¥i]. The linear inertial

integral then becomes the definition of the system inertia matrix:

[h,J_ P.,]

•
(24)

If this integration is performed in the local link coordinate frame, and the modes are

assumed to be decoupled at the local link level, and variations due to the flexibility are
not considered, the elements can be defined as:

[ EndEnd[D,,,.1]
(25)

where:

Ettd_-_[l] (25.a)

EHd-- m_[_= m_
0 cruz -Cmy]

-cm, 0 co_ ]
Cmy .-Crux

(25.b)
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[_i_= p® [o]

cmy_-cm 2 -cm_cmy -cm_cm_

-cm_cmy cm_Z+cm_2 -cm_cm_

-cm_cm_ -cm_m_ cm_Z+cm_

p_[_[_c_]I_, ],iv

(25.c)

(25.d)

(25.e)

(25.19

and,

[_:
[o] ____x_[ ,_]T[ _._]

V

(2.5.g)

such that [Ilcm ] is the rigid body rotational inertia at the center of mass, m i is the total

link mass, and cm is the undeflected position of the center of mass in the link coordinate

frame. In practical situations, these inertial parameters may be estimated via finite

element analysis, or some appropriate experimental technique. To transform the inertial

parameters back into a common frame (which is necessary), the matrix is pre- and post-
multiplied by a transformation matrix, where the mxm identity matrix is used to make the
matrix multiplication conformable.

["rJ [o2 Eo]
[,q= [o2[_,] [o]

[o] [o] [_]

[E_,] [o] [o] ]1-
[o]JL [o] [o] D]

(26)

Often the nonlinear inertial terms are presented as Christoffei Symbols of the
inertia matrix, which are multiplied by the appropriate joint velocities to obtain the

nonlinear loads. The computation involved in computing the Christoffel Symbols is

overwhelming for a mechanism with many flexible modes, and the mathematical operations

involved are not easy to understand. The number of computations can be minimized by
collecting common operations. To do so, the nonlinear acceleration of each link is

computed using an iterative algorithm, then the nonlinear loads on each link are

computed, and finally the loads are transformed back into j-m space using the [.IT]

relationship. The nonlinear loads will be computed from the accelerations and angular

velocities of the center of mass of the link. The nonlinear accelerations may be computed
in an iterative fashion:

(27)
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And the nonlinear forces are approximated by:

m, l
The final dynamical equations are expressed in j-m space, and in a standard form:

where [II*] is the system inertia matrix in j-m space, and the vectors of externally

applied, and nonlinear inertial loads are given in j-m space.

V-Sim: A SIMULATOR FOR FLEXIBLE ROBOTICS:

These dynamical equations have been implemented as a computer program named
V-Sire. It is currentl_ being used in a variety of applications ranging from simulation of

cantilever beams to simulations of the Space Shuttle Remote Manipulator System. The

program automatically formulates the dynamical model for an open-loop manipulator. The

manipulator may have n joints, which may be translational and rotational, and may have m
modes of vibration. The resulting equations of motion may be used in simulations for

controls design and analysis, mechanical design and analysis, or operational assessments.
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